Laser water treatment technique

  • 10.12.2022

Assuring that a growing global population has access to clean water will require new water treatment methods. One of these next-generation methods involves a form of iron called ferrate, which creates fewer toxic byproducts than chemicals like chlorine and is potentially cheaper and easier to deploy than complex ozone treatment systems.

For ferrate to work best, however, it needs to be combined with other compounds or excited by light energy. Now, using a technique involving ultra-fast laser and X-ray pulses, a team of University of Rhode Island researchers has revealed new details about the chemical reaction that occurs when ferrate is exposed to visible and ultraviolet light. The findings, published in the Journal of the American Chemical Society, could help researchers to optimize its use in water treatment applications.

"The light activation of ferrate has really never been investigated in detail," said Dugan Hayes, an assistant professor of chemistry at URI and the study's corresponding author. "In this study, we were able to reveal some of those photophysical properties for the first time."